Applications and Variations of Domination in Graphs
نویسندگان
چکیده
OF THE DISSERTATION Applications and Variations of Domination in Graphs by Paul Andrew Dreyer, Jr. Dissertation Director: Fred S. Roberts In a graph G = (V, E), S ⊆ V is a dominating set of G if every vertex is either in S or joined by an edge to some vertex in S. Many different types of domination have been researched extensively. This dissertation explores some new variations and applications of dominating sets. We first introduce the concept of Roman domination. A Roman dominating function is a function f : V → {0, 1, 2} such that every vertex v for which f(v) = 0 has a neighbor w with f(w) = 2. This corresponds to a problem in army placement where every region is either defended by its own army or has a neighbor with two armies, in which case one of the two armies can be sent to the undefended region if a conflict breaks out. The weight of a Roman dominating function f is f(V ) = ∑ v∈V f(v), and we are interested in finding Roman dominating functions of minimum weight. We explore the graph theoretic, algorithmic, and complexity issues of Roman domination, including algorithms for finding minimum weight Roman dominating functions for trees and grids. We then explore a dynamic variant of domination. Given a graph with each vertex having a sign {+,−}, we define a k−threshold process by updating the graph at every time step according to the rule that a vertex switches sign if and only if k or more of its neighbors have the opposite sign. A set S of vertices is a k−conversion set if when a
منابع مشابه
Coverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کاملDomination and Signed Domination Number of Cayley Graphs
In this paper, we investigate domination number as well as signed domination numbers of Cay(G : S) for all cyclic group G of order n, where n in {p^m; pq} and S = { a^i : i in B(1; n)}. We also introduce some families of connected regular graphs gamma such that gamma_S(Gamma) in {2,3,4,5 }.
متن کاملDomination parameters of Cayley graphs of some groups
In this paper, we investigate domination number, $gamma$, as well as signed domination number, $gamma_{_S}$, of all cubic Cayley graphs of cyclic and quaternion groups. In addition, we show that the domination and signed domination numbers of cubic graphs depend on each other.
متن کاملOn exponential domination and graph operations
An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....
متن کاملOn the super domination number of graphs
The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...
متن کاملTwin minus domination in directed graphs
Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...
متن کامل